
Orion: Time Estimated Causally Consistent
Key-Value Store

Diptanshu Kakwani

IIT Madras, India

dipk@cse.iitm.ac.in

Rupesh Nasre

IIT Madras, India

rupesh@cse.iitm.ac.in

Abstract
This paper presents a causally consistent key-value store

Orion, which uses a novel protocol for Read Only Transac-

tions (ROT). Unlike most of the existing protocols, Orion
uses only one round of communication in the best case, and

not more than two rounds in the worst case. We provide

a theoretical bound on its communication complexity and

qualitatively compare it with recent ROT protocols. We also

quantitatively compare Orion with state-of-the-art proto-

col CausalSpartanX and illustrate that Orion achieves up to

1.7× higher throughput and generates 10× fewer messages

on widely-used YCSB workload.

CCSConcepts. •Computer systems organization→Dis-
tributed architectures; • Software and its engineering
→ Consistency.
Keywords. Causal consistency, distributed consistency, key

value stores, geo-replication

ACM Reference Format:
Diptanshu Kakwani and Rupesh Nasre. 2020.Orion: Time Estimated

Causally Consistent Key-Value Store. In PaPoC’20: 7th Workshop on
Principles and Practice of Consistency for Distributed Data, April 27,
2020, Heraklion, Crete, Greece. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/1122445.1122456

1 Introduction
Distributed key-value stores have become a de facto compo-

nent of modernweb-scale applications. These data stores pro-

vide low latency operations to clients across the world. Many

of these data stores support eventual consistency, which is

the weakest form of consistency and offers the best perfor-

mance. However, eventual consistency does not provide any

practically useful guarantees, except that once there are no

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PaPoC’20, April 27, 2020, Heraklion, Crete, Greece
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

new updates to a data item, it will eventually become con-

sistent. Causal consistency, on the other hand, has caught

up attention in recent years, as it lies in between the two

extremes of eventual consistency and strong consistency. It

is also the strongest form of consistency that can satisfy all

the three properties of CAP [10, 15], which makes it a good

candidate for distributed applications.

In the past few years, various protocols for enforcing

causal consistency have been proposed. A majority of these

protocols focuses on optimizing read operations since real-

world workloads are often read-heavy [3, 14]. In particular,

most protocols support Read Only Transactions (ROT) [11,

12], which allows a client to readmultiple keys from a causally

consistent snapshot. In this work, we present a novel ROT

protocol, named Orion, to reduce communication in the un-

derlying distributed network. A salient feature of Orion is

that it uses only one round of communication in the best

case, unlike the usual, fixed two rounds in other protocols.

Reduction in rounds is achieved by carefully predicting the

stable vector of data items. We implemented this protocol

in DKVF key-value store framework [18], and observe that

our proposal outperforms the state-of-the-art protocols on

YCSB workload [6].

1.1 Contributions
This paper makes the following contributions

1
:

• Anovel ROT protocol for causally consistent key-value

store that uses only one round of communication in

the best case, and not more than two rounds in the

worst case.

• Theoretical comparison of Orionwith the recent causally
consistent key-value stores.

• Benchmarking Orion against the existing state-of-the-

art system CausalSpartanX [17] on YCSB workload,

and illustrating that it achieves upto 1.7× throughput

improvement.

1.2 Outline
Section 2 describes the system model. Section 3 describes the

proposed Orion protocol. Section 4 quantitatively evaluates

Orion and compares it against CausalSpartanX protocol.

Section 5 compares and contrasts with the related work, and

Section 6 concludes with directions for future work.

1
Source code of Orion is available at https://github.com/dipkakwani/Orion

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://github.com/dipkakwani/Orion

PaPoC’20, April 27, 2020, Heraklion, Crete, Greece Kakwani and Nasre

2 System Model
In our system, we consider a distributed multi-version key-

value store with full replication across all data centers (DCs).

Keys are partitioned using a hash function, and each partition

is replicated in all the data centers. The data store has 𝑛

partitions and 𝑚 data centers. Partition 𝑖 located in data

center 𝑗 is denoted by 𝑝
𝑗

𝑖
. Each partition periodically sends

a heartbeat to its replicas in other data centers. We assume

that each client is sticky to one data center, to ensure highly

available transactions with causal consistency [4].

A client can read and write a key 𝑘 using 𝐺𝐸𝑇 (𝑘) and
𝑃𝑈𝑇 (𝑘, 𝑣𝑎𝑙𝑢𝑒) operations respectively. In addition, a client

can perform read-only transaction as defined in [11, 12].

𝑅𝑂𝑇 (𝐾 = {𝑘1, 𝑘2, 𝑘3,}) returns causally consistent values

of all the keys in the set 𝐾 .

3 Orion Protocol
Orion protocol extends the CausalSpartan protocol [16] to

support ROT. Similar to CausalSpartan, Orion uses Hybrid

Logical Clock (HLC), which assigns timestamps to events

using both logical and physical clocks. In case of concurrent

updates, Orion uses last-writer-win [23] strategy to resolve

conflicts, i.e., write with the higher timestamp overwrites a

lower timestamp write. If two writes have the same times-

tamp, the tie is broken using DC id. Each partition maintains

a Version Vector𝑉𝑉 2
, which has𝑚 timestamps, one for each

data center. 𝑉𝑉 [𝑗] stores the timestamp of the latest update

received from the 𝑗𝑡ℎ data center. Partitions within the same

data center exchange their 𝑉𝑉 s periodically and compute

Data center Stable Vector (𝐷𝑆𝑉) by finding entry-wise min-

imum values. A timestamp 𝑡 in 𝐷𝑆𝑉 [𝑗] indicates that the
local data center has received all the updates happened till

clock value 𝑡 at the 𝑗𝑡ℎ data center. Client also maintains

𝐷𝑆𝑉𝑐 , which is the entry-wise maximum 𝐷𝑆𝑉 value seen by

the client since it may contact different partitions within the

same data center.

𝐷𝑆𝑉 alone is insufficient to enforce causality. It captures

only stable timestamps across data centers, whereas the most

recent update within a partition can have a higher timestamp.

Each client also maintains a Dependency Set𝐷𝑆𝑐 , which con-

tains tuples of ⟨𝑖, 𝑡⟩, where t is the highest timestamp of the

versions read, which were originally written at data center

𝑖 . Each version 𝑥𝑖 of a key also has Dependency Set 𝑥𝑖 .𝐷𝑆 ,

which is computed using 𝐷𝑆𝑐 at the time of the creation of

the version.

Figure 1 shows an example of Orion ROT protocol. The

client issues 𝑅𝑂𝑇 (𝑎, 𝑏) at 𝐷𝐶1 with the predicted snapshot

vector 𝑆𝑉 = [15, 23, 12]. We explain how client makes this

prediction in the next section. Keys 𝑎 and 𝑏 reside in parti-

tions 𝑃1𝑖 and 𝑃
1

𝑗 respectively. Since 𝑆𝑉 <= 𝐷𝑆𝑉 1

𝑖 and 𝑆𝑉 <=

𝐷𝑆𝑉 1

𝑗 , the 𝑆𝑉 is valid in both the partitions. Partition then

2
We use capital letters for vectors, tuples and sets, and lower case letters

for scalar values.

��2 ��3

17 26 12���
1

�
15 28 14���

1

�

15 23 12��

{(0, 10), (1, 20)}. ���0
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

. ���0

{(1, 22), (2, 12)}. ���1
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

{(0, 14), (1, 25), (2, 12)}. ���1

�
1

�
�

1

�

��� (�, �)

{(1, 19)}

��1

.....

Client � partitions

Figure 1. Example of Orion ROT protocol

Algorithm 1 Client side algorithm for ROT

1: function ROT(𝐾)

2: 𝑐𝑡 = currentTime()

3: 𝑉 = {}
4: 𝑆𝑉 = 𝐷𝑆𝑉 + 𝑐𝑡 − (𝜏ℎ + 𝜏𝑑𝑠𝑣 + 𝐿𝐴𝑇 + 𝑡)
5: 𝐾𝑝 = {𝑘 ∈ 𝐾 | findPartition(𝑘) = 𝑝} ∀𝑝 ∈ {1..𝑛}
6: 𝑡 = currentTime() ⊲ Update last ROT time

7: for 𝐾𝑖 ∈ 𝐾𝑝 ≠ 𝜙 do
8: send ⟨ROT 𝐾𝑖 , 𝑆𝑉 ⟩
9: receive ⟨ROTReply 𝑉𝑖 , 𝐷𝑆𝑉 , 𝐷𝑆⟩
10: if 𝑉𝑖 = 𝐷𝑆𝑉 = 𝐷𝑆 = {} then
11: ⊲ Retry ROT with old DSV value

12: 𝑆𝑉 = 𝐷𝑆𝑉

13: Retry

14: 𝐷𝑆𝑉𝑐 = max(𝐷𝑆𝑉𝑐 , 𝐷𝑆𝑉)

15: 𝐷𝑆𝑐 = maxDS(𝐷𝑆𝑐 , 𝐷𝑆)

16: 𝑉 = 𝑉 ∪𝑉𝑖
17: return 𝑉

finds the latest versionwhich satisfies the constraint𝑥𝑖 .𝐷𝑆 <=

𝑆𝑉 . The underlined versions in Figure 1 satisfy the constraint

and are returned to the client.

3.1 ROT Client Protocol
Algorithm 1 presents the client-side ROT processing. In this

protocol, the client predicts a 𝑆𝑉 , instead of relying on a

coordinating server to find out a valid snapshot. Such a pre-

diction crucially avoids an extra step of communication. The

prediction uses latency between the servers as one of the

parameters. Sovran et al. [19] experimentally showed that up-

dates replicated across data centers take time uniformly dis-

tributed in the interval [𝑅𝑇𝑇𝑚𝑎𝑥 , 2×𝑅𝑇𝑇𝑚𝑎𝑥] where 𝑅𝑇𝑇𝑚𝑎𝑥
is the maximum round-trip latency between different data

centers.

Orion: Time Estimated Causally Consistent Key-Value Store PaPoC’20, April 27, 2020, Heraklion, Crete, Greece

The prediction can be made in multiple ways. In our im-

plementation, as shown in line 4, the client performs the

prediction using these parameters: previous 𝐷𝑆𝑉 , current

time at the client 𝑐𝑡 , heartbeat period of servers 𝜏ℎ ,𝐷𝑆𝑉 com-

putation interval of partitions 𝜏𝑑𝑠𝑣 , latency between servers

𝐿𝐴𝑇 , and the timestamp of the client in the last ROT. In

words, the formula adds the time elapsed since the last ROT

while taking into account the delay with which any update

is propagated between servers. Note that we are assuming

that the network latency between the servers is known a

priori to the client. For simplicity, we use the maximum la-

tency between any two servers in our implementation. This

formula can be explained by tracing the exact time it takes

for a timestamp at one server to reach another server. The

clock increments after every heartbeat interval 𝜏ℎ , and then

it is sent to other replicas. The time taken for this message

to reach other replicas is proportional to the latency 𝐿𝐴𝑇

between the servers. Once it reaches a replica, it is prop-

agated to other partitions in the same 𝐷𝐶 as part of 𝐷𝑆𝑉

computation 𝜏𝑑𝑠𝑣 . A possible alternative formulation can

consider using the frequency with which PUT operations

are performed instead of relying on heartbeat interval.

The client combines keys from the same partition and

sends those as one ROTmessage, as shown in Line 5.We tried

multiple ways to send ROT messages: sending messages in

parallel, sending one key per message, etc. However, sending

messages asynchronously with all the keys per partition

achieved the best performance. If the client receives an empty

response (Line 10), the client retries with a safe value of 𝑆𝑉 ,

without any prediction. This would ensure a valid result but

may result in stale values. In our experiments, we have found

that 99 percent of the predictions had a small Mean Absolute

Error (MAE) of less than or equal to 76ms (explained in

Section 4).

3.2 ROT Server Protocol
Algorithm 2 presents the server-side ROT processing in

Orion. It checks the validity of 𝑆𝑉 received from the client.

The client may have mispredicted and sent an invalid 𝑆𝑉 , if

at least one of the 𝑆𝑉 entries is greater than the correspond-

ing entry in 𝐷𝑆𝑉 (Line 2). In such a case, the server gives a

second chance to the client. It waits until a pre-configured

timeout and rechecks for validity of 𝑆𝑉 . If the check fails

again, then the server aborts the request and sends an empty

result to the client. The client must now retry with a lower

𝑆𝑉 value. Such a second-chance allows the protocol to keep

a smaller timeout (to improve latency), and still reduce the

number of aborts (to improve throughput).

The timeout is a user-defined parameter, which puts a

hard limit on how long to wait. It can make the protocol non-

blocking or blocking. If 𝑆𝑉 is valid, the server performs read

operation on each key using 𝑆𝑉 , which returns the latest

version of the key visible in the snapshot. The server then

Algorithm 2 Server side algorithm for ROT

1: Upon receive ⟨ROT 𝐾, 𝑆𝑉 ⟩
2: if isValidSV(SV, DSV) = FALSE then
3: wait(timeout)

4: if isValidSV(SV, DSV) = FALSE then
5: send ⟨ROTReply {}, {}, {}⟩
6: Exit

7: 𝑉 = {}
8: 𝐷𝑆𝑚𝑎𝑥 = {}
9: for 𝑘 ∈ 𝐾 do
10: 𝑉𝑘 , 𝐷𝑆 = read(k, SV)

11: 𝑉 = 𝑉 ∪𝑉𝑘
12: 𝐷𝑆𝑚𝑎𝑥 = maxDS(𝐷𝑆𝑚𝑎𝑥 , 𝐷𝑆)

13: send ⟨ROTReply 𝑉 , 𝐷𝑆𝑉 , 𝐷𝑆𝑚𝑎𝑥 ⟩
14: function isValidSV(SV, DSV)

15: if 𝑆𝑉𝑖 <= 𝐷𝑆𝑉𝑖 ,∀𝑖 ∈ {1..𝑚} then
16: return true

17: else
18: return false

returns the resulting value set 𝑉 , along with the 𝐷𝑆𝑉 and

the maximum 𝐷𝑆 to the client.

4 Experimental Evaluation
Orion is implemented on top of DKVF [18]

3
. We compare

Orion against CausalSpartanX [17] which is a state-of-the-

art distributed implementation of causally consistent data

store. The experiments were performed on Google Cloud

Platform (GCP) using N1-Standard-2 VMs, each having 2

vCPUs and 7.5 GB RAM. We use 3 DCs: Iowa (US-Central),

Finland (Europe-North), Taiwan (Asia-East) with each DC

having 4 VMs and 4 partitions. We populate the setup with

YCSB workload [6].

4.1 Communication Improvement
Having single-round processing allows Orion to improve

overall communication substantially. To quantify the effect,

we measure the number of messages generated. Figure 2

compares the total number of messages generated by both

the systems in ROT transactions. CausalSpartanX involves

server to server communication and generates slice request

messages to get values of remote keys. As the number of

keys in ROT increases, we see a linear increase in the number

of messages. In Orion, in contrast, the number of messages

increases both slowly and linearly, as it involves only client

to server communication. This clearly illustrates the perfor-

mance benefit of Orion.

4.2 Prediction Accuracy
A crucial aspect of Orion is client-side prediction, and to be

effective, the prediction accuracy must be low. We calculate

3https://github.com/roohitavaf/DKVF

https://github.com/roohitavaf/DKVF

PaPoC’20, April 27, 2020, Heraklion, Crete, Greece Kakwani and Nasre

4 8 16
Number of ROT keys

0

1

2

3

4

5

6

7
Nu

m
be

r o
f m

es
sa

ge
s

×106

CausalSpartanX
Orion

Figure 2. Comparison of number of messages

0.0 20.0 40.0 60.0 80.0
MAE (msec)

0.1

1

10

100

RO
T

Co
un

t (
Lo

g
Sc

al
e)

×105

Figure 3. Prediction accuracy of 99 percentile ROTs

the prediction accuracy using Mean Absolute Error (𝑀𝐴𝐸)

between 𝑆𝑉 (predicted 𝐷𝑆𝑉) and the actual 𝐷𝑆𝑉 , 𝑀𝐴𝐸 =
1

𝑚

∑𝑚
𝑖=1 |𝑆𝑉𝑖 − 𝐷𝑆𝑉𝑖 |. Figure 3 shows the histogram plot of

MAE value and count of ROT transactions. We limit to 99

percentile of MAE values, to discount the initial 0 prediction

made by the clients. A largemajority of the predictions (~80%)

is exact and has no error. We observe that there are very

few predictions with error marginally above zero. This is

because our prediction is most likely to be off by the factors

included in the equation in Algorithm 1, line 4. We also

observe the local maxima around 50, which is also the 𝐷𝑆𝑉

computation interval used in the experiment. Overall, less

than 1% of transactions have invalid predictions. With the

5:95 20:80 50:50
Put:ROT ratio

0

1000

2000

3000

4000

5000

6000

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

CausalSpartanX Orion

Figure 4. Throughput with varying put:ROT ratio

2 4 6 8
Partitions

0

1000

2000

3000

4000

5000

6000

7000
Th

ro
ug

hp
ut

 (o
ps

/s
ec

)
CausalSpartanX
Orion

Figure 5. Throughput with varying number of partitions

timeout interval set to 200 ms, none of the transactions timed

out.

4.3 Effect of Put:ROT Ratio
Figure 4 shows the overall throughput (number of opera-

tions per second) with varying put:ROT ratio. Since ROT

operation is relatively slower than put (10 keys by default

in one ROT operation), we see an increase in throughput

in both the systems as we decrease the ROT proportion in

the workload. However, the throughput increases relatively

faster in CausalSpartanX as ROTs are much slower than put

operation in CausalSpartanX compared to those in Orion.

Orion: Time Estimated Causally Consistent Key-Value Store PaPoC’20, April 27, 2020, Heraklion, Crete, Greece

4.4 Effect of Number of Partitions
The number of partitions is an important factor that affects

the overall system performance. Figure 5 shows the through-

put with varying number of partitions. Overall, the through-

put increases as we increase the number of partitions. How-

ever, with 8 partitions, the hardware becomes the bottleneck

as the underlying VM has 2 cores, and each of the 4 VMs runs

2 processes and an extra client process runs on one of the

VMs. Therefore, we see a drop in throughput for 8 partitions

in both the systems. Interestingly, even with 6 partitions

CausalSpartanX throughput drops. A factor which affects

this behavior is increase in communication between parti-

tions, as run time of ROT in CausalSpartanX is dependent

on communication between all pairs of partitions.

5 Related Work
Earlier systems such as COPS [11], Eiger [12], Bolt-on causal

consistency [5] and COPS-SNOW [13] used explicit depen-

dency tracking to enforce causal consistency, which caused

extra overhead in these systems.ChainReaction [2],Orbe [8],
GentleRain [9], Cure [1] and more recent systems such as

POCC [20],Wren [21], CausalSpartanX [17], Contrarian [7]

and PaRiS [22], use variants of vector clocks instead of ex-

plicit dependency tracking. These systems use either physical

clock, logical clock, or a combination of these two clocks.

Depending on the clock, ROT can either be blocking or non-

blocking. Also, all these systems use a coordinating server in

ROT protocol which causes an extra round of communication

among the servers.

Table 1 shows the ROT properties of the recent systems

and Orion. The basic structure of the ROT protocol of these

systems is as follows. Client sends a key set along with the

metadata to the coordinating server. The coordinating server

calculates a stable snapshot timestamp and sends query to

the respective partitions based on the keys in ROT, along

with the snapshot timestamp. Once it receives replies from

other partitions, it sends the result back to the client. As

shown in Table 1, the client to server communication is de-

pendent on the number of keys 𝐾 and size of the metadata.

On the other hand, the server to server communication is de-

pendent on the number of partitions communicated, which

is the number of keys in the worst case, and size of the meta-

data. Note that even though the metadata-size required for

ROT in some systems is smaller, that cost is transferred to

periodic metadata exchange messages between the parti-

tions. For example, in PaRiS, the partitions exchange 𝐷𝑆𝑉
with all other partitions across all data centers, including the

local data center. We chose CausalSpartanX for comparison

because it makes a reasonable trade-off between metadata

communication and the size of the transaction. Orion re-

quires only client to server communication since the client

predicts the stable snapshot timestamp. Orion can take 2

rounds of communication if the client performs a wrong

System NB1 #R2 Comm3
C4

c↔s s↔s

POCC[20] ✗ 2 𝐾 +𝑀 𝐾 ×𝑀 + 𝐾 P

CausalSpartanX[17] ✓ 2 𝐾 +𝑀 𝐾 ×𝑀 + 𝐾 H

Wren[21] ✓ 2 𝐾 + 2 𝐾 × 2 + 𝐾 H

Contrarian[7] ✓ 2 𝐾 +𝑀 𝐾 ×𝑀 + 𝐾 H

PaRiS[22] ✓ 2 𝐾 + 1 𝐾 + 𝐾 H

Orion ✓ ≤ 2 𝐾 ×𝑀 + 𝐾 0 H

1
Nonblocking

2
Number of rounds

3
Communication complexity (including metadata) of ROT with 𝐾 keys

and𝑀 DCs

4
Clock - Hybrid (H) or Physical (P)

Table 1. Comparison of Orion with recent causally consis-

tent key-value stores.

prediction, but in the best case, it takes only 1 round. As dis-

cussed in Section 4, less than 1% of transactions had invalid

predictions in our setup.

6 Conclusion and Future Work
In this paper, we presented a novel protocol for causally con-

sistent ROTs and showed both theoretically and empirically

that it outperforms the previous state-of-the-art protocols.

We used a prediction technique to generate a snapshot vector

at the client-side, instead of relying on servers for generating

the vector. As part of future work, we would like to explore

various other prediction techniques that might perform bet-

ter and do not explicitly depend on server configuration

parameters. For example, instead of relying on the client

to provide latency parameters between servers, the servers

compute it during run time and share it with the clients as

part of the initial handshake.

Acknowledgments
We thank K. C. Sivaramakrishnan for his valuable inputs in

our discussions. This work is partially supported by MEITY

project CS/19-20/1123/MEIT/008606.

References
[1] Deepthi Devaki Akkoorath, Alejandro Z Tomsic, Manuel Bravo, Zhong-

miao Li, Tyler Crain, Annette Bieniusa, Nuno Preguiça, and Marc

Shapiro. 2016. Cure: Strong semantics meets high availability and

low latency. In 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 405–414.

[2] Sérgio Almeida, João Leitão, and Luís Rodrigues. 2013. ChainReac-

tion: a causal+ consistent datastore based on chain replication. In

Proceedings of the 8th ACM European Conference on Computer Systems.
85–98.

[3] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. 2012. Workload analysis of a large-scale key-value store.

In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint
international conference on Measurement and Modeling of Computer
Systems. 53–64.

[4] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, JosephMHeller-

stein, and Ion Stoica. 2013. Highly Available Transactions: Virtues and

PaPoC’20, April 27, 2020, Heraklion, Crete, Greece Kakwani and Nasre

Limitations. Proceedings of the VLDB Endowment 7, 3 (2013).
[5] Peter Bailis, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. 2013.

Bolt-on causal consistency. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. 761–772.

[6] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking cloud serving systems with

YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
143–154.

[7] Diego Didona, Rachid Guerraoui, Jingjing Wang, and Willy

Zwaenepoel. 2018. Causal consistency and latency optimality: friend

or foe? Proceedings of the VLDB Endowment 11, 11 (2018), 1618–1632.
[8] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel.

2013. Orbe: Scalable causal consistency using dependency matrices

and physical clocks. In Proceedings of the 4th annual Symposium on
Cloud Computing. 1–14.

[9] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel.

2014. Gentlerain: Cheap and scalable causal consistency with physical

clocks. In Proceedings of the ACM Symposium on Cloud Computing.
1–13.

[10] Seth Gilbert and Nancy Lynch. 2002. Brewer’s conjecture and the

feasibility of consistent, available, partition-tolerant web services. Acm
Sigact News 33, 2 (2002), 51–59.

[11] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G

Andersen. 2011. Don’t settle for eventual: scalable causal consistency

for wide-area storage with COPS. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles. 401–416.

[12] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G

Andersen. 2013. Stronger semantics for low-latency geo-replicated

storage. In Presented as part of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 13). 313–328.

[13] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai Mu, and Wyatt

Lloyd. 2016. The SNOW Theorem and Latency-Optimal Read-Only

Transactions. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16). 135–150.

[14] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt,

Yee Jiun Song, Wendy Tobagus, Sanjeev Kumar, and Wyatt Lloyd.

2015. Existential consistency: measuring and understanding consis-

tency at Facebook. In Proceedings of the 25th Symposium on Operating
Systems Principles. 295–310.

[15] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. 2011. Consistency,
availability, convergence. Technical Report.

[16] Mohammad Roohitavaf, Murat Demirbas, and Sandeep Kulkarni. 2017.

Causalspartan: Causal consistency for distributed data stores using hy-

brid logical clocks. In 2017 IEEE 36th Symposium on Reliable Distributed
Systems (SRDS). IEEE, 184–193.

[17] Mohammad Roohitavaf, Murat Demirbas, and Sandeep Kulkarni. 2018.

CausalSpartanX: Causal Consistency and Non-Blocking Read-Only

Transactions. arXiv preprint arXiv:1812.07123 (2018).
[18] Mohammad Roohitavaf and Sandeep Kulkarni. 2018. DKVF: a frame-

work for rapid prototyping and evaluating distributed key-value stores.

In Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering. 912–915.

[19] Yair Sovran, Russell Power, Marcos K Aguilera, and Jinyang Li. 2011.

Transactional storage for geo-replicated systems. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles.
385–400.

[20] Kristina Spirovska, Diego Didona, and Willy Zwaenepoel. 2017. Opti-

mistic causal consistency for geo-replicated key-value stores. In 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2626–2629.

[21] Kristina Spirovska, Diego Didona, and Willy Zwaenepoel. 2018. Wren:

Nonblocking reads in a partitioned transactional causally consistent

data store. In 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 1–12.

[22] Kristina Spirovska, Diego Didona, and Willy Zwaenepoel. 2019. PaRiS:

Causally Consistent Transactions with Non-blocking Reads and Partial

Replication. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 304–316.

[23] Robert H Thomas. 1979. A majority consensus approach to concur-

rency control for multiple copy databases. ACM Transactions on Data-
base Systems (TODS) 4, 2 (1979), 180–209.

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 System Model
	3 Orion Protocol
	3.1 ROT Client Protocol
	3.2 ROT Server Protocol

	4 Experimental Evaluation
	4.1 Communication Improvement
	4.2 Prediction Accuracy
	4.3 Effect of Put:ROT Ratio
	4.4 Effect of Number of Partitions

	5 Related Work
	6 Conclusion and Future Work
	References

